A local constitutive model with anisotropy for ratcheting under 2D axial-symmetric isobaric deformation
نویسندگان
چکیده
A local constitutive model for anisotropic granular materials is introduced and applied to isobaric (homogeneous) axial-symmetric deformation. The simplified model (in the coordinate system of the bi-axial box) involves only scalar values for hydrostatic and shear stresses, for the volumetric and shear strains as well as for the new ingredient, the anisotropy modulus. The non-linear constitutive evolution equations that relate stress and anisotropy to strain are inspired by observations from Discrete Element Method (DEM) simulations. For the sake of simplicity, parameters like the bulk and shear modulus are set to constants, while the shear stress ratio and the anisotropy evolve with different rates to their critical state limit values when shear deformations become large. When applied to isobaric deformation in the bi-axial geometry, the model shows ratcheting under cyclic loading. Fast and slow evolution of anisotropy with strain (relative to the evolution of anisotropy in stress) lead to dilatancy and contractancy, respectively. Furthermore, anisotropy acts such that it works “against” the strain/stress, e.g., a compressive strain builds up anisotropy that creates additional stress acting against further compression.
منابع مشابه
Numerical and Experimental Study on Ratcheting Behavior of Plates with Circular Cutouts under Cyclic Axial Loading
In this paper, accumulation of plastic deformation of AISI 1045 steel plates with circular cutouts under cyclic axial loading is studied. Loading was applied under force-control conditions. Experimental tests were performed using a Zwick/Roell servo hydraulic machine. Under force-control loading with nonzero mean force, plastic strain was accumulated in continuous cycles called ratcheting. Nume...
متن کاملNumerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading
Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting beha...
متن کاملA local constitutive model with anisotropy for various homogeneous 2D biaxial deformation modes
A local constitutive model for granular materials with anisotropy is proposed and applied to different biaxial box deformation modes. The simplified version of the model (in the coordinate system of the biaxial box) involves only scalar values for hydrostatic and shear stresses, for the isotropic and shear strains as well as the new parameter, the (scalar) anisotropy modulus. A non-linear const...
متن کاملA 2D constitutive non-linear model with anisotropy for granular materials
Dense granular materials behave differently from classical fluids or solids and can not be described through the continuum theories developed for those. In fact behavior at macro-scale is strongly related to smaller-scale field variables and kinetic processes. The influence of the micromechanics on the non-coaxiality of stress, strain and anisotropy of soils, is an essential part of a constitut...
متن کاملMultiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...
متن کامل